MOST: Why does the combination of CRRT with hemoadsorption seem to be a Plus?

Thomas RIMMELE – MD PhD

Anesthesiology and Intensive Care Medicine

Edouard Herriot Hospital

LYON, FRANCE

thomas.rimmele@chu-lyon.fr

Atelier Jafron – CAPSO 2021 - Bordeaux

Conflicts of Interest

Scientific partnership with the following companies:

- Baxter
- BBraun
- Biomérieux
- Estor/Toray
- Exthera
- Fresenius Medical Care
- Infomed
- Jafron
- Medtronic
- Nikkiso

SIX reasons why we will be slowly moving from standard RRT to MOST (Multi Organ Support Therapy)

1) In 2021, It is mandatory that, in your unit, on a regular basis, CRRT is stable, continuous (I mean really continuous!....), and effective.

No excuse anymore!

How to obtain a continuous, stable and predictable session ?

How to obtain a continuous, stable and predictable session ?

1) Good doctors and good nurses (team work +++) who work with protocols made from guidelines

2) Good products (CRRT machine, biocompatible circuit)

3) Good management of circuit anticoagulation

4) Filter Performance optimized over time

5) Good dialysis catheter

Correct management of the « package » (anticoag – mb/FF – catheter)

continuous, stable and predictable CRRT session

Ready to work on a more complex extracorporeal treatment session

Continuous renal replacement therapy: forty-year anniversary

Claudio Ronco^{1,2}

¹Department of Nephrology, Dialysis and Transplantation, St. Bortolo Hospital, Vicenza - Italy ²International Renal Research Institute of Vicenza (IRRIV), St. Bortolo Hospital, Vicenza - Italy

Our patients who need CRRT are most of the time the sickest ICU patients = Patients with MOF

Renal dysfunction

+

- Respiratory dysfunction
- Hemodynamic dysfunction
- Neurologic dysfunction
- Liver dysfunction

= very poor prognosis

Organ Cross-talks

Approx. 50% of AKI in the ICU are related to sepsis!

Table 2 Variables at the time of acute kidney injury (n = 666)

Etiology of AKI	
Sepsis	271 (40.7 %)
Hypovolemia	227 (34.1 %)
Drug related	96 (14.4 %)
Cardiogenic shock	88 (13.2 %)
Hepatorenal syndrome	21 (3.2 %)
Obstruction of the urine outflow tract	9 (1.4 %)
Predisposing factors for AKI	
Diuretic treatment	216 (32.4 %)
NSAID administration	79 (11.9 %)
Aminoglycoside administration	45 (6.8 %)
Glycopeptide administration	9 (1.4 %)
Amphotericin administration	0 (0 %)
Radiocontrast media administration	14 (2.1 %)
Organ dysfunction at time of AKI	
Mechanical ventilation	
Invasive	185 (27.8 %)
Non-invasive	33 (5.0 %)
FiO ₂	0.4 (0.3, 0.6)
PaO ₂	90 (471, 114)

5)

Industry is ready!

SOUNDING BOARD

2015

Precision Medicine — Personalized, Problematic, and Promising

J. Larry Jameson, M.D., Ph.D., and Dan L. Longo, M.D.

2016

The 17th Acute Disease Quality Initiative International Consensus Conference: Introducing Precision Renal Replacement Therapy

John A. Kellum^a Claudio Ronco^b

^aCenter for Critical Care Nephrology, CRISMA, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa., USA; ^bDepartment of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza, San Bortolo Hospital, Vicenza, Italy

But be careful!

Medical knowledge

Technological progress

Past

Future

MANY UNANSWERED QUESTIONS :

Which patients exactly? Which Timing? How do these therapies exactly work? What to ultimately remove?

Septic shock: Hyperinflammation followed by severe immunosuppression

Hotchkiss et al. Nat Med 2009

EXTRACORPOREAL BLOOD PURIFICATION TECHNIQUES AVAILABLE IN 2021

- High-volume hemofiltration and Cascade hemofiltration
- Plasma exchanges
- Coupled Plasma Filtration Adsorption

Now available concomitantly to RRT!

• Hemoperfusion: PMX-B (Toray), Cytosorb (Cytosorbents), LPS adsorber (Alteco), HA330 (Jafron), HA380 (Jafron)

• New membranes: high adsorptive hemofiltration (oXiris, Baxter) and high cut-off membranes (Emic2, Fresenius Medical Care)

Is hemoperfusion a safe therapy regarding adverse events?

Yes it is a safe therapy!

	Context	Study type	Sample Size	Modality	Adverse Events / Safety Issues
Nemeth 2018	Cardiac Transplantation	Case series	16 (vs 16 controls)	Within CPB Mean = 203 min	No difference in adverse events observed
Friesecke 2017	Sepsis / Cardiac surgery / Others	Observational	198	With CRRT / Within CPB or hemoperfusion Range from 8 to 60.8 hrs hrs	No device-associated side effect
Träger 2016	Cardiac Sx (Endocarditis)	Case series	39 (28 hist. controls)	During CPB Median= 132 min.	No mention of adverse events
Träger 2017	Post-CPB SIRS	Case series	16	With CRRT Range: 5-88 h	No mention of adverse events
Kogelmann 2017	Septic shock	Case series	26	With CRRT	No device-related adverse events during or after the treatment sessions
Friesecke 2017	Septic shock	Case series	20	With CRRT	No serious adverse effects of the therapy were observed

BMC Nephrology

RESEARCH ARTICLE

Open Access

Effectiveness of extracorporeal blood purification (hemoadsorption) in patients with severe coronavirus disease 2019 (COVID-19)

Masoumeh Asgharpour¹⁽ⁱ⁾, Hamed Mehdinezhad¹⁽ⁱ⁾, Masoumeh Bayani²⁽ⁱ⁾,

Mahmoud Sadeghi Haddad Zavareh²⁽⁰⁾, Seyed Hossein Hamidi³⁽⁰⁾, Roghayeh Akbari⁴⁽⁰⁾, Reza Ghadimi⁵⁽⁰⁾, Ali Bijani⁵⁽⁰⁾ and Simin Mouodi^{5*}⁽⁰⁾

- Critically ill COVID-19 patients
- Babol University of Medical Sciences, IRAN
- Inclusion: patients with no positive clinical improvement after antiviral and antibacterial drugs
- 10 patients underwent 3 sessions of hemoperfusion (cartridges HA-280 and HA-230 - Jafron Biomedical, CHINA) with CVVH (B.Braun)

SpO2 improved (figure) IL-6: 139 +/- 105. to 72 +/- 65 pg/ml

Asgharpour et al. BMC Nephrol 2020

Case Report

Successful recovery of severe COVID-19 with cytokine storm treating with extracorporeal blood purification

Qiang Wang^a, Zhao Hu^{b,*}

^a Department of Nephrology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China ^b Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China

Q. Wang, Z. Hu/International Journal of Infectious Diseases 96 (2020) 618-620

A 62-year-old male with severe SARS-CoV-2 infection

Figure 1. The changes of cytokines and FDPs and the medications applied. The left vertical axis represents the levels of interleukin 2 (IL-2, blue dot) and fibrinogen degradation products (FDPs, purple dot). The right vertical axis represents the levels of interleukin 6 (IL-6, red dot) and interferon γ (INF γ , green dot). The horizontal axis shows the illness days. The gray vertical bar shows the artificial liver therapy. The horizontal bars with different colors represent the medications, and the lengths represent the corresponding duration. Lh Qw denotes the Lianhua Qingwen capsule.

Wang et al. Int J Infect Dis 2020

Early Cytokine Removal in Critical COVID-19 Patients with Extracorporeal Therapies (HA-380 plus High Volume Hemofiltration) May Prevent Progression of Acute Respiratory Distress Syndrome: Case Report

Case Report

DOI: 10.1159/000512982

Blood Purif

Blood

Purification

Gonzalo Ramírez-Guerrero^{a, b} Vicente Torres Cifuentes^{a, b} Romyna Baghetti Hernández^a Francisco Villagrán Cortés^{a, b} Simón Rojas Doll^a Rocio Oliva Alarcón^a Cristian Lucero Córdova^a Pablo Flores Fernandez^a Osvaldo Garay Coloma^a

^aCritical Care Unit, Carlos Van Buren Hospital, Valparaíso, Chile; ^bDialysis and Renal Trasplant Unit, Carlos Van Buren Hospital, Valparaíso, Chile

59 year old man EBP : HP (HA-380, Jafron biomedical) + HVHF 70 ml/kg/h

Ramirez-Guerrero et al. Blood Purif 2020

Short communication

Continues renal replacement therapy (CRRT) with disposable hemoperfusion cartridge: A promising option for severe COVID-19

Farzaneh Dastan^{a,b}, Ali Saffaei^c, Seyed Mehdi Mortazavi^b, Hamidreza Jamaati^b, Nadia Adnani^d, Sasan Samiee Roudi^e, Arda Kiani^f, Atefeh Abedini^b, Seyed MohammadReza Hashemian^{b,*}

^a Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran ^b Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

^c Student Research Committee, Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

^d Nephrology Research Center, Department of Nephrology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

e Infectious Research Center, Department of Infectious Disease, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

^f Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

F. Dastan et al. / Journal of Global Antimicrobial Resistance 21 (2020) 340-341

Fig. 1. The chest X-ray of the patient during hospitalization (a; admission time, b; before hemoperfusion, c; after hemoperfusion).

A 54 year old man **EBP: CRRT + HA 380**

IL-1: 523 pg/mL to 38 pg/ml

Dastan et al. Journal of Global Antimicrobial Resistance 2020

K. BLOOD PURIFICATION

1. We make no recommendation regarding the use of blood purification techniques.

Rationale Blood purification includes various techniques, such as high-volume hemofiltration and hemoadsorption (or hemoperfusion), where sorbents, removing either endotoxin or cytokines, are placed in contact with blood; plasma exchange or plasma filtration, through because of clotting of the circuit, which raises doubts about CPFA feasibility.

In consideration of all these limitations, our confidence in the evidence is very low either in favor of or against blood purification techniques; therefore, we do not provide a recommendation. Further research is needed to clarify the clinical benefit of blood purification techniques.

Rhodes et al. Intensive Care Med 2017

Blood Purification

Recommendations

59. For adults with sepsis or septic shock, we **suggest against** using polymyxin B haemoperfusion *Weak recommendation; low quality of evidence*

60. There is insufficient evidence to make a recommendation on the

use of other blood purification techniques

Further research is needed to determine the effect of various blood purification techniques on patient outcomes.

Evans et al. Intensive Care Med 2021

2018

FIGURE 4. Integrated continuous renal replacement therapy venous port - negative pressure. CRRT, continuous rena replacement therapy.

FIGURE 6. Integrated continuous renal replacement therapy hybrid ports. CRRT, continuous renal replacement therapy

Centrifugal blood pump

Renal system

FIGURE 8. Parallel continuous renal replacement therapy. CRRT, continuous renal replacement therapy.

Original Article

Renal replacement therapy in extra-corporeal membrane oxygenation patients: A survey of practices and new insights for future studies

Frank Bidar ^{a,b,*}, Charles-Edouard Luyt ^{c,d}, Antoine Schneider ^e, Marlies Ostermann ^f, Philippe Mauriat ^g, Etienne Javouhey ^{b,h}, Jean-Luc Fellahi ^{i,j}, Thomas Rimmelé ^{a,b} for the ARCOTHOVA Group

Table 3 Configurations of RRT device connection and pr

Configurations of RRT device connection and pressure alarms encountered.

	VA-ECMO	VV-ECMO
	n = 85, respondents	n = 82, respondents
Configuration of RRT device connection		
Integration of RRT device in the ECMO circuit	34 (40)	36 (43.9)
Connection of RRT device via separate vascular access	24 (28)	29 (32.2)
Integration of RRT device in ECMO circuit or connection of RRT device via a separate vascular access	27 (32)	17 (18.9)
When RRT is integrated in the ECMO the circuit		
	VA-ECMO	VV-ECMO
	VA-ECMO n = 61, respondents	VV-ECMO n = 53, respondents
RRT connection modality	VA-ECMO n = 61, respondents	VV-ECMO n = 53, respondents
RRT connection modality Connection of inlet and outlet line after the ECMO pump (Fig. 1b)	VA-ECMO n = 61, respondents 35 (57)	VV-ECMO n = 53, respondents 29 (55)
RRT connection modality Connection of inlet and outlet line after the ECMO pump (Fig. 1b) Connection of inlet and outlet line before the ECMO pump (Fig. 1c)	VA-ECMO n = 61, respondents 35 (57) 11 (18)	VV-ECMO n = 53, respondents 29 (55) 10 (19)
RRT connection modality Connection of inlet and outlet line after the ECMO pump (Fig. 1b) Connection of inlet and outlet line before the ECMO pump (Fig. 1c) Connection of inlet line after the pump and the outlet line before the ECMO pump (Fig. 1d)	VA-ECMO n = 61, respondents 35 (57) 11 (18) 8 (13)	VV-ECMO n = 53, respondents 29 (55) 10 (19) 5 (9)
RRT connection modality Connection of inlet and outlet line after the ECMO pump (Fig. 1b) Connection of inlet and outlet line before the ECMO pump (Fig. 1c) Connection of inlet line after the pump and the outlet line before the ECMO pump (Fig. 1d) Connection on the ECMO oxygenator (Fig. 1e)	VA-ECMO n = 61, respondents 35 (57) 11 (18) 8 (13) 8 (13)	VV-ECMO n = 53, respondents 29 (55) 10 (19) 5 (9) 8 (15)

2021

Bidar et al. Anesth Crit Care Pain Med 2021

CRITICAL CARE MEDICINE

Anesthesiology 2009; 111:826-35

Copyright © 2009, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Tidal Volume Lower than 6 ml/kg Enhances Lung Protection

Role of Extracorporeal Carbon Dioxide Removal

Pier Paolo Terragni, M.D.,* Lorenzo Del Sorbo, M.D.,* Luciana Mascia, M.D., Ph.D.,* Rosario Urbino, M.D.,* Erica L. Martin, Ph.D.,* Alberto Birocco, M.D.,† Chiara Faggiano, M.D.,† Michael Quintel, M.D.,‡ Luciano Gattinoni, M.D.,§ V. Marco Ranieri, M.D.||

Background: Tidal hyperinflation may occur in patients with acute respiratory distress syndrome who are ventilated with a tidal volume (V_T) of 6 ml/kg of predicted body weight develop a plateau pressure (P_{PLAT}) of $28 \le P_{PLAT} \le 30$ cm H₂O. The authors verified whether V_T lower than 6 ml/kg may enhance lung protection and that consequent respiratory acidosis may be managed by extracorporeal carbon dioxide removal.

cytokines concentration (P < 0.01) were observed after 72 h of ventilation with V_T lower than 6 ml/kg. No patient-related complications were observed.

Conclusions: $V_{\rm T}$ lower than 6 ml/Kg enhanced lung protection. Respiratory acidosis consequent to low $V_{\rm T}$ ventilation was safely and efficiently managed by extracorporeal carbon dioxide removal.

Anesthesiology 2009; 111:699-700

Copyright © 2009, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Ventilator-induced Lung Injury

Less Ventilation, Less Injury

THE publication of the seminal article by the Acute Respiratory Distress Syndrome Network (ARDSNet) on ventilation with lower tidal volumes in 2000 has changed the way we ventilate patients with ARDS.^{1,2} The use of low tidal volumes was the first therapy ever proven to improve survival of patients who were diagnosed with ARDS. Despite initial reluctance and even open criticism,^{3,4} clinicians across the world have embraced this practice,⁵ and ventilation with a tidal volume of 6 ml/kg of ideal body weight has become the standard of care for patients with acute lung injury and ARDS of various etiologies.^{6,7,8}

Remarkably, evidence is accumulating that ventilation may inflict damage to the injured lung, even with these small tidal volumes. The reason lies in the anatomical inhoturns out to be between 200 and 250 ml. The consequent increase of the $Paco_2$ was predictable, and the authors prospectively planned to remove the excess carbon dioxide through an extracorporeal circuit modified from a standard continuous veno-venous hemofiltration setup. The intervention was safe and produced notable physiologic improvements. As this approach will undoubtedly be investigated further, a number of considerations seem important.

When should carbon dioxide removal be initiated? Growing evidence suggests that hypercapnic acidosis is well tolerated (permissive hypercapnia),¹⁶ and it may even be beneficial. A *post boc* analysis of the ARDS-Net low tidal volume study suggested that hypercapnic aci-

TRUE STORY: Mr G, a peaceful retired grandpa...

- Man, 68 years old, 1 m 71 84 kg
- Past medical history: High blood pressure Mild Chronic Kidney Disease (stable)
- Admitted to the burn ICU due to:
- Domestic accident Fire burn
 - Total burn surface area = 50% (3rd degree = 45%)
 - Face, back, thorax, upper limbs and both hands

Burns: a sepsis-like syndrome!

Hyperinflammation followed by severe immunosuppression

Burns: a sepsis-like syndrome!

Hyperinflammation followed by severe immunosuppression

Review

Extracorporeal blood purification in burns: A review

Katharina Linden^{a,*}, Ian J. Stewart^b, Stefan F.X. Kreyer^a, Vittorio Scaravilli^a, Jeremy W. Cannon^{b,c}, Leopoldo C. Cancio^{a,d}, Andriy I. Batchinsky^a, Kevin K. Chung^{a,c}

^a U.S. Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, United States ^b San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX 78234, United States

Table 1 –	 Examples, 	, technical details	, and studie	s for a selecti	on of mem	branes des	signed for c	ytokine removal.
-----------	-------------------------------	---------------------	--------------	-----------------	-----------	------------	--------------	------------------

Name	SepteX [®] Gambro	oXiris® Gambro	PMMA different Toray membranes	Polymyxin B Toraymyxin [®] , Toray	CytoSorb [®] CytoSorbents	CPFA [®] Bellco
Туре	High cutoff membrane	Adsorptive membrane	Adsorptive membrane	Adsorptive membrane	Adsorbing column	Coupled plasma filtration and adsorption
Use	As CRRT in sepsis manufacturer recommends CVVHD; study planned in CVVH	As CRRT in sepsis Use in CVVH or CVVHDF modes	As CRRT In different modes	Sepsis/endotoxemia hemoperfusion	Cytokine hemoperfusion	In multi-organ failure and/or sepsis CPFA
Fibers	Polyarylether-sulfon	Acrylonitril + natrium- methallyl-sulfonat- copolymer + polyethylenimin	Polymethylmetha- crylate	Polymyxin B covalently immobilized; polystyrene derived	Cross-linked divinylbenzene/ polyvinylpyrrolidone beads	Reverse-phase styrenic polymer resin
Surface	1.1 m ²	1.5 m ²	1–2.1 m ²	N/A	850 m ² /g	600-800 m ² /g
Studies/reviews in burn patients	N/A	N/A	Case report [44] reduction of IL-6	Reduction of endotoxin, IL-1ß, IL-6, IL-8, and TNF-α; no different outcomes compared to no treatment	N/A Might be able to remove myoglobin	N/A
Studies/reviews in septic patients	Might play a role in removing myoglobin [2,23] Greater relative decrease of IL-6 than with high-flux membrane [54] Preliminary results of HICOSS no difference in mortality, duration of ICU-stay, need of catecholamines compared to conventional CVVHD membrane [2]	No studies in humans	Removed cytokines ef- fectively and improved hemodynamics (CHDF mode) [43]	EUPHAS: improved hemodynamics, organ dysfunction, 28-day mortality in intra- abdominal Gram-negative infections [38]	CytoSorb's European Sepsis Trial: reduction in IL-6, MCP-1, IL-1ra and IL-8. No IL-10, 28- day, and 60-day mortality reduction. No removal of endotoxin [51]	Improved hemodynamics (CPFA + HD) compared to CVVHDF; may restore leukocyte responsiveness [58]

Linden et al. Burns 2014

Burn pigs

 15 pigs with 40% total body surface area deep burn (9 Hemoadsorption vs 6 in sham group)

SHOCK, Vol. 44, No. 5, pp. 487–495, 2015

EVALUATION OF THE CYTOSORB[™] HEMOADSORPTIVE COLUMN IN A PIG MODEL OF SEVERE SMOKE AND BURN INJURY

Katharina Linden,*[§] Vittorio Scaravilli,*[¶] Stefan F.X. Kreyer,*^{||} Slava M. Belenkiy,* Ian J. Stewart,[‡] Kevin K. Chung,*[†] Leopoldo C. Cancio,*[†] and Andriy I. Batchinsky*

- 6-hour HA session or sham session at day 1 day 2 and day 3
- Significant removal of IL 1b, IL 6, IL 10 et myoglobine by the device but no significant systemic or pulmonary reductions

(Looking for centers interested in participating in a multicenter study on hemoperfusion in burn patients)

Efficacy and safety of blood purification in the treatment of deep burns

A systematic review and meta-analysis

Gaofei Zhang, MM^a[®], Wenjun Liu, MD, PhD^{b,*}, Jiamei Li, MM^b, Di Wang, MM^b, Jianxing Duan, MM^b, Hanxiao Luo, MM^b

3.3.3. Safety (vital signs and routine blood laboratory results). Three studies concluded that blood purification treatment for severe burns had no adverse effect on patient vital signs and was safe and feasible ^[7,9,11]. No systemic adverse events were observed.

	Experim	ental	Contr	lo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Chung, K,2009	11	29	20	28	23.5%	0.53 [0.32, 0.89]	
Chung, K.2017	5	23	5	14	7.2%	0.61 [0.21, 1.73]	
Liu, F, 2016	7	20	9	21	10.2%	0.82 [0.38, 1.77]	
Lyu, T, 2018	3	43	11	43	12.7%	0.27 [0.08, 0.91]	
You, B, 2018	9	41	13	41	15.0%	0.69 [0.33, 1.44]	
Zu, H, 2015	20	98	27	97	31.4%	0.73 [0.44, 1.22]	
Total (95% CI)		254		244	100.0%	0.62 [0.47, 0.82]	•
Total events	55		85				
Heterogeneity: Chi ² =	3.12, df	= 5 (P =	0.68); 12	= 0%			har da l a
Test for overall effect	: Z = 3.31	(P = 0.	0009)				6.05 0.2 1 5 20 Favours [experimental] Favours [control]

Figure 3. Meta-analysis of 28-day mortality in both groups.

Zhang et al. Medicine 2021

CONCLUSION

- 1) MOST: New concept facilitating organ support management
- 2) Therapies are under scientific investigation
- 3) Interesting for precision, individualised medicine in the ICU
- 4) Strong rationale to deeply assess these extracorporeal therapies

www.sofrasims-lyon2022.fr

